Projects

Revision as of 14:16, 28 April 2016 by A3sriniv (talk | contribs) (Current Projects)

Current Projects

_NOTOC_

Sim.jpg

Intel Parallel Computing Center

The Intel PCC at SDSC for Earthquake Simulation is an interdisciplinary research center with the goal of modernizing SCEC’s highly scalable 3D earthquake modeling environment, called AWP-ODC. The modernizations will leverage the latest multi-core Intel Xeon processors and many-core, self-hosted, next-generation Intel Xeon Phi processors architecture. More info

Shmovcaltech.jpg

Supercomputing On Demand: SDSC Supports Event-Driven Science

HPGeoC supports on-demand CalTech users for urgent science earthquake applications. National Science Foundation (NSF) XSEDE supercomputing resource Trestles is allocated to open this new computing paradigm. We've developed novel ways of utilizing this type of allocation as well as scheduling and job handling procedures. More info

CS.jpg

CyberShake SGT Calculation

AWP-ODC is a highly scalable, parallel finite-difference application developed at SDSC and SDSU to simulate dynamic rupture and wave propagation that occurs during an earthquake. We have developed strain Green's tensor (SGT) creation and seismogram synthesis. The GPU-based SGT calculations resulted in 6.5x speedup on XK7 compared to XE6, this improved computational efficency in the waveform modeling of CyberShake research will save hundreds of millions of processor-core hours to create a California state-wide physics-based seismic hazard map. More info

CFM.jpg

Simulating Earthquake Faults (FESD)

HPGeoC Researchers are assisting researchers from six other universities and the US Geological Survey (USGS) to develop detailed, large-scale computer simulations of earthquake faults under a new $4.6 million National Science Foundation (NSF) grant announced September 2011. The initial focus is on the North American plate boundary and the San Andreas system of Northern and Southern California. More info

Recent Completions

M8.jpg

SCEC M8 Simulation

M8 is the largest earthquake simulation ever conducted, a collaborative effort led by SCEC and requiring collaboration of more than 30 seismologists and computational scientists, supported by DOE INCITE allocation award. It presented tremendous computational and I/O challenges. The simulation was conducted on NCCS Jaguar, a ACM Gordon Bell finalist at Supercomputing'10. More info

10hz.jpg

GPU Acceleration Project

HPGeoC has developed a hybrid CUDA MPI paradigm with AWP-ODC code that achieved 2.3 Pflop/s sustained performance and enabled a rough fault 0-10Hz modeling simulation on ORNL Titan. This code is also used to study the effects of nonlinearity on surface waves during large quakes on the San Andreas fault. More info

Hecura-2.jpg

Topology-aware Communication and Scheduling (HECURA-2)

Topology-aware MPI communication, mapping, and scheduling is a new research area. This is to take advantage of the topological path to communication optimization  (either point-to-point or collective). We are participating in a joint project between OSU, TACC and SDSC as a case study in how to implement new topology-aware MPI software at the application level.

Petashake.jpg

Petascale Inference in Earthquake System Science (PetaShake-2)

This is a SCEC project with cross-disciplinary, multi-institutional CME Collaboration. We are providing a platform-independent petascale earthquake application that is able to enlist petascale computing to tackle PetaShake problems through a graduated series of milestone calculations. More info

Petasha-3.jpg

Petascale Cyberfacility for Physics-based Seismic Hazard Analysis (PetaSHA-3)

The SCEC PetaSHA-3 project is sponsored by NSF to provide society with better predictions of earthquake hazards. This project will provide the high- performance computing required to achieve the objectives for earthquake source physics and ground motion prediction outlined in the SCEC3 (2007-2012) research plan. More info

Finished Projects

  • PetaShake-1 Advanced computational platform designed to support high-resolution simulations of large earthquakes on initial NSF petascale machines, supported by NSF OCI and GEO grant
  • HECURA-1 In collaboration with OSU and TACC, we developed non-blocking one-sided and two-sided communication and computation/communication overlap to improve the parallel efficiency of SCEC seismic applications.
  • PetaSHA-1/2Cross-disciplinary, multi-institutional collaboration, coordinated by SCEC, each 2-year EAR/IF project with the same name to develop a cyberfacility with a common simulation framework for executing SHA computational pathways
  • TeraShake The TeraShake Simulations model the rupture of a 230 kilometer stretch of the San Andreas fault and the consequent 7.7 magnitude earthquake. TeraShake wasa multi-institution collaboration led by SCEC/CME.
  • Shakeout The Great California Shakeout is a statewide earthquake drill. It is held in October each year and serves as preparation for what to do before, during, and after an earthquake.
  • Parallelization of Regional Spectral Method (RSM)

High Performance Computing Allocations

Sources of Funding

</div>