Difference between revisions of "Projects"

(Current Projects)
(Current Projects)
Line 1: Line 1:
 
__NOTOC__
 
__NOTOC__
 
= Current Projects =
 
= Current Projects =
 
+
_NOTOC_
<div id = "newscontent">
+
<div id = "tablecontent">
 
+
<div id = "row">
{| class="personnel_tbl"
+
<div id = "left">
 
 
| width="448" valign="top" |
 
 
[[Image:sim.jpg|left|185x150px|link=]]
 
[[Image:sim.jpg|left|185x150px|link=]]
  
Line 13: Line 11:
 
The Intel PCC at SDSC for Earthquake Simulation is an interdisciplinary research center with the goal of modernizing SCEC’s highly scalable 3D earthquake modeling environment, called AWP-ODC. The modernizations will leverage the latest multi-core Intel Xeon processors and many-core, self-hosted, next-generation Intel Xeon Phi processors architecture.
 
The Intel PCC at SDSC for Earthquake Simulation is an interdisciplinary research center with the goal of modernizing SCEC’s highly scalable 3D earthquake modeling environment, called AWP-ODC. The modernizations will leverage the latest multi-core Intel Xeon processors and many-core, self-hosted, next-generation Intel Xeon Phi processors architecture.
 
[http://www.sdsc.edu/News%20Items/PR20160209_earthquake_center.html More info]
 
[http://www.sdsc.edu/News%20Items/PR20160209_earthquake_center.html More info]
 +
</div>
  
| width="448" valign="top" |
+
<div id = "right">
 
[[Image:fault-tolerance.jpg|left|185x150px|link=]]
 
[[Image:fault-tolerance.jpg|left|185x150px|link=]]
  
Line 20: Line 19:
  
 
Current checkpoint/restart approach may introduce an unacceptable amount of overhead into some file systems. In collaboration with CSM, we are developing a fault tolerance framework in which the survival application processes will adapt itself to failures. In collaborating with ORNL, we are integrating ADIOS to scale checkpointing up on Lustre file system. [http://www.olcf.ornl.gov/center-projects/adios/ More info]
 
Current checkpoint/restart approach may introduce an unacceptable amount of overhead into some file systems. In collaboration with CSM, we are developing a fault tolerance framework in which the survival application processes will adapt itself to failures. In collaborating with ORNL, we are integrating ADIOS to scale checkpointing up on Lustre file system. [http://www.olcf.ornl.gov/center-projects/adios/ More info]
|-
+
</div>
 +
</div>
  
| width="448" valign="top" |
+
<div id = "row">
 +
<div id = "left">
 
[[Image:shmovcaltech.jpg|left|185x150px|link=]]
 
[[Image:shmovcaltech.jpg|left|185x150px|link=]]
  
Line 28: Line 29:
  
 
HPGeoC supports on-demand CalTech users for urgent science earthquake applications. National Science Foundation (NSF) XSEDE supercomputing resource Trestles is allocated to open this new computing paradigm. We've developed novel ways of utilizing this type of allocation as well as scheduling and job handling procedures. [http://shakemovie.caltech.edu/ More info]
 
HPGeoC supports on-demand CalTech users for urgent science earthquake applications. National Science Foundation (NSF) XSEDE supercomputing resource Trestles is allocated to open this new computing paradigm. We've developed novel ways of utilizing this type of allocation as well as scheduling and job handling procedures. [http://shakemovie.caltech.edu/ More info]
 +
</div>
  
| width="448" valign="top" |
+
<div id = "right">
 
[[Image:p7.jpg|left|185x150px|link=]]
 
[[Image:p7.jpg|left|185x150px|link=]]
  
Line 35: Line 37:
  
 
Supported by NSF Petascale Application Improvement Discovery (PAID) program through NCSA, this project will tune the SCEC community code AWP-ODC on Blue Waters for performance efficiency on Kepler. Our research will investigate how earthquake ruptures produce high frequency ground motions. High frequency ground motions are known to have an important impact on seismic hazards. Existing HPC systems cannot achieve the physical scale range needed to explore the source of high frequencies. [http://www.ncsa.illinois.edu/News/Stories/big_one/ More info]
 
Supported by NSF Petascale Application Improvement Discovery (PAID) program through NCSA, this project will tune the SCEC community code AWP-ODC on Blue Waters for performance efficiency on Kepler. Our research will investigate how earthquake ruptures produce high frequency ground motions. High frequency ground motions are known to have an important impact on seismic hazards. Existing HPC systems cannot achieve the physical scale range needed to explore the source of high frequencies. [http://www.ncsa.illinois.edu/News/Stories/big_one/ More info]
|-
+
</div>
 +
</div>
  
| width="448" valign="top" |
+
<div id = "row">
 +
<div id = "left">
 
[[Image:CS.jpg|left|185x150px|link=]]
 
[[Image:CS.jpg|left|185x150px|link=]]
  
Line 43: Line 47:
  
 
AWP-ODC is a highly scalable, parallel finite-difference application developed at SDSC and SDSU to simulate dynamic rupture and wave propagation that occurs during an earthquake. We have developed strain Green's tensor (SGT) creation and seismogram synthesis. The GPU-based SGT calculations resulted in 6.5x speedup on XK7 compared to XE6, this improved computational efficency in the waveform modeling of CyberShake research will save hundreds of millions of processor-core hours to create a California state-wide physics-based seismic hazard map. [http://scec.usc.edu/scecpedia/CyberShake More info]
 
AWP-ODC is a highly scalable, parallel finite-difference application developed at SDSC and SDSU to simulate dynamic rupture and wave propagation that occurs during an earthquake. We have developed strain Green's tensor (SGT) creation and seismogram synthesis. The GPU-based SGT calculations resulted in 6.5x speedup on XK7 compared to XE6, this improved computational efficency in the waveform modeling of CyberShake research will save hundreds of millions of processor-core hours to create a California state-wide physics-based seismic hazard map. [http://scec.usc.edu/scecpedia/CyberShake More info]
 +
</div>
  
| width="448" valign="top" |
+
<div id = "right">
 
[[Image:Viz3.jpg|left|185x150px|link=]]
 
[[Image:Viz3.jpg|left|185x150px|link=]]
  
Line 50: Line 55:
  
 
This project focuses on the visualization of a series of large earthquake simulations in the interest of gaining scientific insight into the impact of Southern San Andreas Fault earthquake scenarios on Southern California. In addition to creating its own software, the group also uses tools installed and maintained on SDSC computational resources. [http://visservices.sdsc.edu/projects/scec/ More info]
 
This project focuses on the visualization of a series of large earthquake simulations in the interest of gaining scientific insight into the impact of Southern San Andreas Fault earthquake scenarios on Southern California. In addition to creating its own software, the group also uses tools installed and maintained on SDSC computational resources. [http://visservices.sdsc.edu/projects/scec/ More info]
|-
+
</div>
 +
</div>
  
| width="448" valign="top" |
+
<div id = "row">
 +
<div id = "left">
 
[[Image:CFM.jpg|left|185x150px|link=]]
 
[[Image:CFM.jpg|left|185x150px|link=]]
  
Line 59: Line 66:
 
HPGeoC Researchers are assisting researchers from six other universities and the US Geological Survey (USGS) to develop detailed, large-scale computer simulations of earthquake faults under a new $4.6 million National Science Foundation (NSF) grant announced September 2011. The initial focus is on the North American plate boundary and the San Andreas system of Northern and Southern California.  
 
HPGeoC Researchers are assisting researchers from six other universities and the US Geological Survey (USGS) to develop detailed, large-scale computer simulations of earthquake faults under a new $4.6 million National Science Foundation (NSF) grant announced September 2011. The initial focus is on the North American plate boundary and the San Andreas system of Northern and Southern California.  
 
[http://www.sdsc.edu/News%20Items/PR092311_earthquake.html More info]
 
[http://www.sdsc.edu/News%20Items/PR092311_earthquake.html More info]
 +
</div>
  
| width="448" valign="top" |
+
<div id = "right">
 
[[Image:plasticity.jpg|left|185x150px|link=]]
 
[[Image:plasticity.jpg|left|185x150px|link=]]
  
Line 66: Line 74:
  
 
Producing realistic seismograms at high frequencies will require several improvements in anelastic wave propagation engines, including the implementation of nonlinear material behavior. This project supports the development of nonlinear material behavior in both the CPU- and GPU-based wave propagation solvers. Simulations of the ShakeOut earthquake scenario have shown that nonlinearity could reduce the earlier predictions of long period (0 - 0.5 Hz) ground motions in the Los Angeles basin by 30-70. [http://onlinelibrary.wiley.com/doi/10.1002/2014GL059411/abstract/ More info]
 
Producing realistic seismograms at high frequencies will require several improvements in anelastic wave propagation engines, including the implementation of nonlinear material behavior. This project supports the development of nonlinear material behavior in both the CPU- and GPU-based wave propagation solvers. Simulations of the ShakeOut earthquake scenario have shown that nonlinearity could reduce the earlier predictions of long period (0 - 0.5 Hz) ground motions in the Los Angeles basin by 30-70. [http://onlinelibrary.wiley.com/doi/10.1002/2014GL059411/abstract/ More info]
|}
+
</div>
 +
</div>
 +
</div>
  
 
= Recent Completions =
 
= Recent Completions =

Revision as of 13:16, 28 April 2016

Current Projects

_NOTOC_

Sim.jpg

Intel Parallel Computing Center

The Intel PCC at SDSC for Earthquake Simulation is an interdisciplinary research center with the goal of modernizing SCEC’s highly scalable 3D earthquake modeling environment, called AWP-ODC. The modernizations will leverage the latest multi-core Intel Xeon processors and many-core, self-hosted, next-generation Intel Xeon Phi processors architecture. More info

Shmovcaltech.jpg

Supercomputing On Demand: SDSC Supports Event-Driven Science

HPGeoC supports on-demand CalTech users for urgent science earthquake applications. National Science Foundation (NSF) XSEDE supercomputing resource Trestles is allocated to open this new computing paradigm. We've developed novel ways of utilizing this type of allocation as well as scheduling and job handling procedures. More info

CS.jpg

CyberShake SGT Calculation

AWP-ODC is a highly scalable, parallel finite-difference application developed at SDSC and SDSU to simulate dynamic rupture and wave propagation that occurs during an earthquake. We have developed strain Green's tensor (SGT) creation and seismogram synthesis. The GPU-based SGT calculations resulted in 6.5x speedup on XK7 compared to XE6, this improved computational efficency in the waveform modeling of CyberShake research will save hundreds of millions of processor-core hours to create a California state-wide physics-based seismic hazard map. More info

CFM.jpg

Simulating Earthquake Faults (FESD)

HPGeoC Researchers are assisting researchers from six other universities and the US Geological Survey (USGS) to develop detailed, large-scale computer simulations of earthquake faults under a new $4.6 million National Science Foundation (NSF) grant announced September 2011. The initial focus is on the North American plate boundary and the San Andreas system of Northern and Southern California. More info

Recent Completions

M8.jpg

SCEC M8 Simulation

M8 is the largest earthquake simulation ever conducted, a collaborative effort led by SCEC and requiring collaboration of more than 30 seismologists and computational scientists, supported by DOE INCITE allocation award. It presented tremendous computational and I/O challenges. The simulation was conducted on NCCS Jaguar, a ACM Gordon Bell finalist at Supercomputing'10. More info

10hz.jpg

GPU Acceleration Project

HPGeoC has developed a hybrid CUDA MPI paradigm with AWP-ODC code that achieved 2.3 Pflop/s sustained performance and enabled a rough fault 0-10Hz modeling simulation on ORNL Titan. This code is also used to study the effects of nonlinearity on surface waves during large quakes on the San Andreas fault. More info

Hecura-2.jpg

Topology-aware Communication and Scheduling (HECURA-2)

Topology-aware MPI communication, mapping, and scheduling is a new research area. This is to take advantage of the topological path to communication optimization  (either point-to-point or collective). We are participating in a joint project between OSU, TACC and SDSC as a case study in how to implement new topology-aware MPI software at the application level.

Petashake.jpg

Petascale Inference in Earthquake System Science (PetaShake-2)

This is a SCEC project with cross-disciplinary, multi-institutional CME Collaboration. We are providing a platform-independent petascale earthquake application that is able to enlist petascale computing to tackle PetaShake problems through a graduated series of milestone calculations. More info

Petasha-3.jpg

Petascale Cyberfacility for Physics-based Seismic Hazard Analysis (PetaSHA-3)

The SCEC PetaSHA-3 project is sponsored by NSF to provide society with better predictions of earthquake hazards. This project will provide the high- performance computing required to achieve the objectives for earthquake source physics and ground motion prediction outlined in the SCEC3 (2007-2012) research plan. More info

Finished Projects

  • PetaShake-1 Advanced computational platform designed to support high-resolution simulations of large earthquakes on initial NSF petascale machines, supported by NSF OCI and GEO grant
  • HECURA-1 In collaboration with OSU and TACC, we developed non-blocking one-sided and two-sided communication and computation/communication overlap to improve the parallel efficiency of SCEC seismic applications.
  • PetaSHA-1/2Cross-disciplinary, multi-institutional collaboration, coordinated by SCEC, each 2-year EAR/IF project with the same name to develop a cyberfacility with a common simulation framework for executing SHA computational pathways
  • TeraShake The TeraShake Simulations model the rupture of a 230 kilometer stretch of the San Andreas fault and the consequent 7.7 magnitude earthquake. TeraShake wasa multi-institution collaboration led by SCEC/CME.
  • Shakeout The Great California Shakeout is a statewide earthquake drill. It is held in October each year and serves as preparation for what to do before, during, and after an earthquake.
  • Parallelization of Regional Spectral Method (RSM)

High Performance Computing Allocations

Sources of Funding

</div>